

Kinetic Equations

Solution to the Exercises

– 13.05.2021 –

Teachers: Prof. Chiara Saffirio, Dr. Théophile Dolmaire

Assistant: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Exercise 1

Let f be a continuous function on \mathbb{R} (or \mathbb{R}_+). Assume in addition that $\lim_{|x| \rightarrow +\infty} f(x) = 0$. Prove that f is uniformly continuous on \mathbb{R} (or \mathbb{R}_+).

Hint: One may rely on the Heine-Cantor theorem, stating that any continuous function f defined between two metric spaces E and F is uniformly continuous if E is a compact set.

Proof. We will prove the result in \mathbb{R}_+ ; one can similarly get the result in \mathbb{R} . Let $\varepsilon > 0$ be fixed. Given that f vanishes at infinity, we consider R such that for any $x > R$ we get $|f(x)| < \frac{\varepsilon}{2}$; now, f is continuous in $[0, R + 1]$; using the Heine-Cantor theorem we deduce that f is absolutely continuous. There exists then $\delta > 0$ such that for any $x, y \in [0, R + 1]$ such that $|x - y| < \delta$ we get $|f(x) - f(y)| < \varepsilon$. We can also assume without loss of generality that $\delta < 1$.

We now have that if $x, y \in [R, +\infty)$ we have $|f(x) - f(y)| \leq |f(x)| + |f(y)| < \varepsilon$.

Given then two points $x, y \in \mathbb{R}_+$ such that $|x - y| < \delta$ we get that either $x, y \in [0, R + 1]$ or $x, y \in [R, +\infty)$. In any case we can conclude that $|f(x) - f(y)| < \varepsilon$ and therefore f is absolutely continuous.

□

Exercise 2

Let $r < r'$ be two positive real numbers. Define the function:

$$\Delta_t(r, r') = f(t, r) - f(t, r'), \quad (1)$$

where f is a solution of the Boltzmann equation:

$$\partial_t f + L(f) f = J(f). \quad (2)$$

Assume that f satisfies

$$0 \leq f(t, r) \leq \frac{c}{(1 + r)^k} \quad (3)$$

for all $(t, r) \in \mathbb{R}_+^2$, with $k > 6$, and where

$$J(f)(t, r) = 4 \int_0^{+\infty} \int_0^{+\infty} f(t, u) f(t, v) G(r, u, v) uv du dv, \quad (4)$$

$$G(r, u, v) = \begin{cases} 0 & \text{if } u^2 + v^2 \leq r^2, \\ 1 & \text{if } u \geq r, v \geq r, \\ \frac{v}{r} & \text{if } u \geq r, v \leq r, \\ \frac{u}{r} & \text{if } u \leq r, v \geq r, \\ \frac{\sqrt{u^2 + v^2 - r^2}}{r} & \text{if } u^2 + v^2 \geq r^2, u \leq r, v \leq r, \end{cases} \quad (5)$$

$$L(f)(t, r) = \int_0^r \left(2r + \frac{2u^2}{3r} \right) f(t, u) u^2 du + \int_r^{+\infty} \left(2u + \frac{2r^2}{3u} \right) f(t, u) u^2 du. \quad (6)$$

(i) Prove that Δ_t solves the differential equation:

$$\partial_t \Delta_t(r, r') + L(f)(t, r) \Delta_t(r, r') = \quad (7)$$

$$= J(f)(t, r) - J(f)(t, r') + f(t, r') (L(f)(t, r') - L(f)(t, r)). \quad (8)$$

(ii) Prove that there exists a positive number $\rho = \rho(t, r, r') \in (r, r')$ such that (7) can be rewritten as

$$\partial_t \Delta_t(r, r') + L(f)(t, r) \Delta_t(r, r') = \quad (9)$$

$$= (r' - r) (f(t, r') \partial_r L(f)(t, \rho) - \partial_r J(f)(t, \rho)). \quad (10)$$

Hint: Introduce a suitable function in order to apply the Mean Value Theorem.

(iii) Proof (and justify carefully) that

$$\partial_r L(f)(t, r) = \int_0^r \left(2 - \frac{2u^2}{3r^2} \right) u^2 f(t, u) du + \frac{4r}{3} \int_0^{+\infty} u f(t, u) du \quad (11)$$

and

$$\partial_r J(f)(t, r) = - \frac{8}{r^2} \left(\int_0^r u^2 f(t, u) du \right) \left(\int_r^{+\infty} v f(t, v) dv \right) \quad (12)$$

$$- \frac{4}{r^2} \int_0^r u f(t, u) \int_{\sqrt{r^2 - u^2}}^r \frac{u^2 + v^2}{\sqrt{u^2 + v^2 - r^2}} v f(t, v) dv du. \quad (13)$$

(iv) Prove that the absolute values of the partial derivatives $|\partial_r L(f)|$ and $|\partial_r J(f)|$ can be bounded respectively by two constants $M_1, M_2 > 0$ that do not depend on t and r .

Hint: To control the second term of $\partial_r J(f)$, one can prove and use that

$$f(u) f(v) \leq \frac{c^2}{\left(1 + \frac{r}{\sqrt{2}}\right)^k}. \quad (14)$$

in the domain of the second integral.

(v) Using the uniform controls on $|\partial_r L(f)|$ and $|\partial_r J(f)|$, prove that for all $(t, r) \in \mathbb{R}_+^2$:

$$|\Delta_t(r, r')| \leq e^{- \int_0^t L(f)(\tau, r) d\tau} |\Delta_0(r, r')| \quad (15)$$

$$+ \int_0^t e^{- \int_s^t L(f)(\tau, r) d\tau} |r' - r| (M_1 c + M_2) ds. \quad (16)$$

(vi) Taking for granted that there exists a constant $k > 0$ such that

$$L(f)(t, r) \geq k \quad (17)$$

for all $(t, r) \in \mathbb{R}_+^2$, deduce from (15) that for all $(t, r) \in \mathbb{R}_+^2$ we have:

$$|\Delta_t(r, r')| \leq |f_0(t, r) - f_0(t, r')| + |r' - r| \frac{M_1 c + M_2}{k}. \quad (18)$$

(vii) Use the previous point to prove the uniform continuity in r (uniformly in t) of the solutions of the Boltzmann equation.

Hint: Use the result of the first exercise.

Proof. (i) is just a rewriting of the terms involved. To prove (ii) we notice that the integrand in J and L are regular enough so that both $J(f)(t, \cdot)$ and $L(f)(t, \cdot)$ are C^1 , so we can apply the Mean Value Theorem to get that for any t, r, r' there exists a value $\rho \in (r, r')$ such that

$$\partial_t \Delta_t(r, r') + L(f)(t, r) \Delta_t(r, r') = \quad (19)$$

$$= J(f)(t, r) - J(f)(t, r') + f(t, r') (L(f)(t, r') - L(f)(t, r)) \quad (20)$$

$$= (r' - r) (f(t, r') \partial_r L(f)(t, \rho) - \partial_r J(f)(t, \rho)). \quad (21)$$

Now to prove (iii) we get that using the fact that f is continuous and Leibniz rule the derivative of L is given by

$$\partial_r L(f)(t, r) = \partial_r \left[\int_0^r \left(2r + \frac{2u^2}{3r} \right) f(t, u) u^2 du + \int_r^{+\infty} \left(2u + \frac{2r^2}{3u} \right) f(t, u) u^2 du \right] = \quad (22)$$

$$= \left(2r + \frac{2r^2}{3r} \right) f(t, r) r^2 + \int_0^r \left(2 - \frac{2u^2}{3r^2} \right) f(t, u) u^2 du \quad (23)$$

$$- \left(2r + \frac{2r^2}{3r} \right) f(t, r) r^2 + \int_r^{+\infty} \left(2u + \frac{4r}{3u} \right) f(t, u) u^2 du \quad (24)$$

$$= \int_0^r \left(2 - \frac{2u^2}{3r^2} \right) f(t, u) u^2 du + \int_r^{+\infty} \left(2u + \frac{4r}{3u} \right) f(t, u) u^2 du. \quad (25)$$

On the other hand we can write explicitly J as

$$J(f)(t, r) = 4 \int_0^r \int_{\sqrt{r^2 - v^2}}^r f(t, u) f(t, v) \frac{\sqrt{u^2 + v^2 - r^2}}{r} u v d u d v \quad (26)$$

$$+ 4 \int_0^r \int_r^{+\infty} f(t, u) f(t, v) \frac{u v^2}{r} d u d v \quad (27)$$

$$+ 4 \int_r^{+\infty} \int_0^r f(t, u) f(t, v) \frac{u^2 v}{r} d u d v \quad (28)$$

$$+ 4 \int_r^{+\infty} \int_r^{+\infty} f(t, u) f(t, v) u v d u d v. \quad (29)$$

Using again that f is continuous and Leibniz rule again we get

$$\partial_r J(f)(t, r) = 4 \int_0^r f(t, u) f(t, r) u^2 du + 4 \int_0^r f(t, r) f(t, v) v^2 dv \quad (30)$$

$$- 4 \int_0^r \int_{\sqrt{r^2-v^2}}^r f(t, u) f(t, v) \frac{u^2 + v^2}{r^2 \sqrt{u^2 + v^2 - r^2}} u v d u d v \quad (31)$$

$$+ 4 \int_r^{+\infty} f(t, u) f(t, r) u r d u - 4 \int_0^r f(t, r) f(t, v) v^2 d v \quad (32)$$

$$- 4 \int_0^r \int_r^{+\infty} f(t, u) f(t, v) \frac{u v^2}{r^2} d u d v - 4 \int_0^r f(t, u) f(t, r) u^2 d u \quad (33)$$

$$+ 4 \int_r^{+\infty} f(t, r) f(t, v) r v d v - 4 \int_r^{+\infty} \int_0^r f(t, u) f(t, v) \frac{u^2 v}{r^2} d u d v \quad (34)$$

$$- 4 \int_r^{+\infty} f(t, u) f(t, r) u r d u - 4 \int_r^{+\infty} f(t, r) f(t, v) r v d v \quad (35)$$

$$= - 4 \int_0^r \int_{\sqrt{r^2-v^2}}^r f(t, u) f(t, v) \frac{u^2 + v^2}{r^2 \sqrt{u^2 + v^2 - r^2}} u v d u d v \quad (36)$$

$$- 8 \int_0^r \int_r^{+\infty} f(t, u) f(t, v) \frac{u v^2}{r^2} d u d v \quad (37)$$

$$= - \frac{4}{r^2} \int_0^r \int_{\sqrt{r^2-v^2}}^r f(t, u) f(t, v) \frac{u^2 + v^2}{r^2 \sqrt{u^2 + v^2 - r^2}} u v d u d v \quad (38)$$

$$- \frac{8}{r^2} \left(\int_0^r f(t, v) v^2 d v \right) \left(\int_r^{+\infty} f(t, u) u d u \right). \quad (39)$$

To prove (iv) we first notice that for any $u \leq r$ we get

$$\left| \left(2 - \frac{2u^2}{3r^2} \right) u^2 \right| \leq \left(2 + \frac{2}{3} \right) u^2 = \frac{8}{3} u^2, \quad (40)$$

and similarly for $u > r$ we get

$$\left| \left(2u + \frac{4r}{3u} \right) u^2 \right| \leq \left(2u + \frac{4}{3} \right) u^2. \quad (41)$$

As a consequence we get that, using (14)

$$|\partial_r L(f)(t, r)| \leq \int_0^{+\infty} \left(\frac{8}{3} + 2u + \frac{4}{3} \right) f(t, u) u^2 d u \leq C \int_0^{+\infty} \frac{u^2}{(1+u)^{k-1}} d u \quad (42)$$

$$\leq M_1 < +\infty. \quad (43)$$

On the other hand, just notice that if $u^2 + v^2 \geq r^2$, $u \leq r$ and $v \leq r$ we get

$$(1+u)(1+v) = 1 + u + v + u v \geq 1 + \max\{u, v\}. \quad (44)$$

Now, if $u \geq v$ we get $r^2 \leq u^2 + v^2 \leq 2u^2$ and therefore $u \geq \frac{r}{\sqrt{2}}$; analogously, if $u < v$ and therefore $v \geq \frac{r}{\sqrt{2}}$ therefore we get that if $r^2 \leq u^2 + v^2 \leq 2u^2$

$$(1+u)(1+v) \geq 1 + \frac{r}{\sqrt{2}}. \quad (45)$$

As a consequence using (14) we get

$$|\partial_r J(f)(t, r)| \leq 8 \left(\int_0^r \frac{u^2}{r^2} f(t, u) du \right) \left(\int_r^{+\infty} v f(t, v) dv \right) \quad (46)$$

$$+ 4 \int_0^r \int_{\sqrt{r^2-u^2}}^r \frac{uv(u^2+v^2)}{r^2\sqrt{u^2+v^2-r^2}} f(t, u) f(t, v) dv du \quad (47)$$

$$\leq C \left(\int_0^{+\infty} \frac{1}{(1+u)^k} du \right) \left(\int_0^{+\infty} \frac{v}{(1+v)^k} dv \right) \quad (48)$$

$$+ C \int_0^r \int_{\sqrt{r^2-u^2}}^r \frac{uv(u^2+v^2)}{r^2\sqrt{u^2+v^2-r^2}} \frac{1}{(1+u)^k (1+v)^k} dv du \quad (49)$$

$$\leq C \left(\int_0^{+\infty} \frac{1}{(1+u)^k} du \right) \left(\int_0^{+\infty} \frac{v}{(1+v)^k} dv \right) \quad (50)$$

$$+ C \frac{1}{\left(1 + \frac{r}{\sqrt{2}}\right)^k} \int_0^r \int_{\sqrt{r^2-u^2}}^r \frac{uv(u^2+v^2)}{r^2\sqrt{u^2+v^2-r^2}} dv du. \quad (51)$$

If we now change variables as $x = \frac{u^2}{r^2}$ and $y = \frac{v^2}{r^2}$ we get

$$\int_0^r \int_{\sqrt{r^2-u^2}}^r \frac{uv(u^2+v^2)}{r^2\sqrt{u^2+v^2-r^2}} dv du = \int_0^1 \int_{\sqrt{1-(u')^2}}^1 \frac{2r^3}{\sqrt{(u')^2 + (v')^2 - 1}} dv' du' = \frac{r^3}{8}. \quad (52)$$

As a consequence we get

$$|\partial_r J(f)(t, r)| \leq C \left(\int_0^{+\infty} \frac{1}{(1+u)^k} du \right) \left(\int_0^{+\infty} \frac{v}{(1+v)^k} dv \right) \quad (53)$$

$$+ C' \frac{r^3}{(1+r)^k} \leq M_2 < +\infty. \quad (54)$$

From these estimates we deduce that

$$\partial_t \Delta_t(r, r') + L(f)(t, r) \Delta_t(r, r') \leq (r' - r) (f(t, r') M_1 + M_2) \quad (55)$$

$$\leq (M_1 + cM_2) (r' - r). \quad (56)$$

Using Duhamel argument we get

$$e^{\int_0^t L(f)(\tau, r) d\tau} |\Delta_t(r, r')| = \left| \Delta_0(r, r') + \int_0^t e^{\int_0^s L(f)(\tau, r) d\tau} (\partial_t \Delta_t(r, r') \right. \quad (57)$$

$$\left. + L(f)(r, r') \Delta_t(r, r')) ds \right| \quad (58)$$

$$\leq |\Delta_0(r, r')| + \int_0^t e^{\int_0^s L(f)(\tau, r) d\tau} (M_1 + cM_2) |r' - r| ds, \quad (59)$$

which implies (15).

Finally, to conclude that f is absolutely continuous, we use the fact that f is continuous and decays at infinity to apply the previous exercise and conclude.

□